5 research outputs found

    Design of Reconfigurable On-Chip Optical Architectures based on Phase Change Material

    Get PDF
    Integrated optics is a promising technology to take the advantage of light propagation for high throughput chip-scale computing architectures and interconnects. Optical devices call for reconfigurable architectures to maximize resource utilization. Typical reconfigurable optical computing architectures involve micro-ring resonators for electro-optic modulation. However, such devices require voltage and thermal tuning to compensate for fabrication process variability and thermal sensitivity. To tackle this challenge we propose to use non-volatile Phase Change Material (PCM) to configure optical path. The non-volatility of PCM elements allows maintaining the optical path without consuming energy and the high contrast between two state of crystalline (cr) and amorphous (am) allows to route signal only through the required resonators, thus saving the calibration energy of bypassed resonators. We evaluate the efficiency of PCM based design on Reconfigurable Directed Logic (RDL) and nanophotonic interconnect. We develop a model allowing to estimate optical and electrical energy consumption. In the context of nanophotonic interconnect we evaluate the efficiency of the proposed PCM-based interconnects using system level simulations carried out with SNIPER manycore simulator. Results show that the proposed implementation allows reducing the static power by 53% on average for RDL and communication power saving up to 52% is achieved for nanophotonic interconnect

    Non-Volatile Phase Change Material based Nanophotonic Interconnect

    No full text
    International audienceIntegrated optics is a promising technology to take advantage of light propagation for high throughput chip-scale interconnects in many core architectures. A key challenge for the deployment of nanophotonic interconnects is their high static power, which is induced by signal losses and devices calibration. To tackle this challenge, we propose to use Phase Change Material (PCM) to configure optical paths between writers and readers. The non-volatility of PCM elements and the high contrast between crystalline and amorphous phase states allow to bypass unused readers, thus reducing losses and calibration requirements. We evaluate the efficiency of the proposed PCM-based interconnects using system level simulations carried out with SNIPER manycore simulator. For this purpose, we have modified the simulator to partition clusters according to executed applications. Simulation results show that bypassing readers using PCM leads up to 52% communication power saving

    Non-Volatile Phase Change Material based Nanophotonic Interconnect

    No full text
    International audienceIntegrated optics is a promising technology to take advantage of light propagation for high throughput chip-scale interconnects in many core architectures. A key challenge for the deployment of nanophotonic interconnects is their high static power, which is induced by signal losses and devices calibration. To tackle this challenge, we propose to use Phase Change Material (PCM) to configure optical paths between writers and readers. The non-volatility of PCM elements and the high contrast between crystalline and amorphous phase states allow to bypass unused readers, thus reducing losses and calibration requirements. We evaluate the efficiency of the proposed PCM-based interconnects using system level simulations carried out with SNIPER manycore simulator. For this purpose, we have modified the simulator to partition clusters according to executed applications. Simulation results show that bypassing readers using PCM leads up to 52% communication power saving

    Non-Volatile Phase Change Material based Nanophotonic Interconnect

    No full text
    International audienceIntegrated optics is a promising technology to take advantage of light propagation for high throughput chip-scale interconnects in many core architectures. A key challenge for the deployment of nanophotonic interconnects is their high static power, which is induced by signal losses and devices calibration. To tackle this challenge, we propose to use Phase Change Material (PCM) to configure optical paths between writers and readers. The non-volatility of PCM elements and the high contrast between crystalline and amorphous phase states allow to bypass unused readers, thus reducing losses and calibration requirements. We evaluate the efficiency of the proposed PCM-based interconnects using system level simulations carried out with SNIPER manycore simulator. For this purpose, we have modified the simulator to partition clusters according to executed applications. Simulation results show that bypassing readers using PCM leads up to 52% communication power saving

    MOF-Based Mycotoxin Nanosensors for Food Quality and Safety Assessment through Electrochemical and Optical Methods

    No full text
    Mycotoxins in food are hazardous for animal and human health, resulting in food waste and exacerbating the critical global food security situation. In addition, they affect commerce, particularly the incomes of rural farmers. The grave consequences of these contaminants require a comprehensive strategy for their elimination to preserve consumer safety and regulatory compliance. Therefore, developing a policy framework and control strategy for these contaminants is essential to improve food safety. In this context, sensing approaches based on metal-organic frameworks (MOF) offer a unique tool for the quick and effective detection of pathogenic microorganisms, heavy metals, prohibited food additives, persistent organic pollutants (POPs), toxins, veterinary medications, and pesticide residues. This review focuses on the rapid screening of MOF-based sensors to examine food safety by describing the main features and characteristics of MOF-based nanocomposites. In addition, the main prospects of MOF-based sensors are highlighted in this paper. MOF-based sensing approaches can be advantageous for assessing food safety owing to their mobility, affordability, dependability, sensitivity, and stability. We believe this report will assist readers in comprehending the impacts of food jeopardy exposure, the implications on health, and the usage of metal-organic frameworks for detecting and sensing nourishment risks
    corecore